Acceptor-Free Alcohol Dehydrogenation by Recyclable Ruthenium Catalyst

Won-Hee Kim, In Soo Park, and Jaiwook Park*

Center for Integrated Molecular System, Department of Chemistry, Pohang University of Science and Technology, San 31 Hyojadong, Pohang, Kyeongbuk 790-784, Republic of Korea

pjw@postech.ac.kr

Received March 28, 2006

2006 Vol. 8, No. 12 2543–2545

ABSTRACT

An efficient oxidant-free oxidation for a wide range of alcohols was achieved by a recyclable ruthenium catalyst. The catalyst was prepared from readily available reagents by a one-pot synthesis through nanoparticle generation and gelation.

Oxidation of alcohols to carbonyl compounds is a fundamental organic transformation.¹ To meet environmental and economical acceptability, much effort has been devoted to develop catalysts systems using molecular oxygen and hydrogen peroxide as the hydrogen acceptors.² However, their application to a large-scale production may be hindered by safety problems.³ Although transfer dehydrogenation of alcohols using ketones and alkenes in anaerobic conditions can be an alternative method, acceptor-free alcohol dehydrogenation is ideal. Several homogeneous catalyst systems have been reported for the dehydrogenation, but they suffer from air sensitivity, low catalytic activity, harsh conditions, requirement of additives, and/or difficult catalyst synthesis and manipulation.^{4–8} Heterogeneous catalysts for the dehydrogenation, in general, have been developed mainly for the interest of hydrogen production from renewable biomass or its fermentation products.^{4a} Our group has developed several catalyst systems for alcohol oxidation under aerobic and anaerobic conditions.^{5,9b} Palladium nanoparticles in aluminum oxyhydroxide is a recent example for the aerobic alcohol oxidation, and an immobilized form of Shvo's diruthenium complex is for the anaerobic alcohol dehydrogenation without any additives.

Here, we describe a recyclable and easily makeable heterogeneous catalyst (1) for acceptor-free alcohol dehydrogenation (Scheme 1). It is active under mild conditions without additives for a wide range of alcohols including those having heteroatoms such as nitrogen and sulfur.

Recently, we have reported a simple synthetic method for recyclable metal nanoparticle catalysts through a sol-gel process,⁹ which involves readily available reagents and does not require calcination nor sintering. The ruthenium catalyst

^{(1) (}a) Sheldon, R. A.; Kochi, J. K. *Metal-Catalyzed Oxidations of Organic Compounds*; Academic Press: New York, 1984. (b) Hudlicky, M. *Oxidation in Organic Chemistry*; American Chemical Society: Washington, DC, 1990.

^{(2) (}a) Sheldon, R. A.; Arends, I. W. C. E.; Dijksman, A. *Catal. Today* **2000**, *57*, 157. (b) Muzart, J. *Tetrahedron* **2003**, *59*, 5789. (c) Zhan, B.-Z.; Thompson, A. *Tetrahedron* **2004**, *60*, 2917. (d) Sheldon, R. A.; van Santen, R. A. *Catalytic Oxidations: Principles and Applications*; World Scientific: Singapore, 1995; p 239.

^{(3) (}a) Keresszegi, C.; Mallat, T.; Baiker, A. New J. Chem. 2001, 25, 1163. (b) Zaccheria, F.; Ravasio, N.; Psaro, R.; Fusi, A. Chem. Commun. 2005, 253.

^{(4) (}a) Junge, H.; Beller, M. *Tetrahedron Lett.* **2005**, *46*, 1031. (b) Meijer, R. H.; Ligthart, G. B. W. L.; Meuldijk, J.; Vekemans, J. A. J. M.; Hulshof, L. A. J. Mol. Catal. A **2004**, *218*, 29.

⁽⁵⁾ Choi, J. H.; Kim, N.; Shin Y. J.; Park, J. H.; Park, J. Tetrahedron Lett. 2004, 45, 4607.

⁽⁶⁾ van Buijtenen, J.; Meuldijk, J.; Vekemans, J. A. J. M.; Hulshof, L. A.; Kooijman, H.; Spek, A. L. Organometallics **2006**, *25*, 873.

 ⁽⁷⁾ Zhang, J.; Gandelman, M.; Shimon, L. J. W.; Rozenberg, H.; Milstein,
 D. Organometallics 2004, 23, 4026.

⁽⁸⁾ Adair, G. R. A.; Williams, J. M. J. Tetrahedron Lett. 2005, 46, 8233.
(9) (a) Kwon, M. S.; Kim, N.; Seo, S. H.; Park, I. S.; Cheedrala, R. K.;
Park, J. Angew. Chem., Int. Ed. 2005, 44, 6913. (b) Kwon, M. S.; Kim, N.;
Park, C. M.; Lee, J. S.; Kang, K. Y.; Park, J. Org. Lett. 2005, 7, 1077. (c)
Park, I. S.; Kwon, M. S.; Kim, N.; Lee, J. S.; Kang, K. Y.; Park, J. Chem. Commun. 2005, 5667. (d) Kim, N.; Kwon, M. S.; Park, C. M.; Park, J. Tetrahedron Lett. 2004, 45, 7057.

Scheme 1.	Preparation of the Ruthenium Catalyst			
EtOH				
+			1) filtration	
RuCl ₃ ·xH ₂ O +	100 ℃ 1 h	H ₂ O 100 °C 30 min	2) wash with acetone 3) dry	ı/AIO(OH) 1
(sec-BuO) ₃ Al				

1 was prepared from ruthenium(III) chloride hydrate, ethanol, and (s-BuO)₃Al through a procedure similar to those reported previously.¹⁰ The TEM images for **1** showed a fibrous matrix typical for aluminum oxyhydroxide (Figure 1). Although

Figure 1. TEM image of 1: (a) low resolution, (b) high resolution.

ruthenium nanoparticles were not identified clearly in the TEM images, energy-dispersive X-ray analysis (EDX) and X-ray photoelectron spectroscopy (XPS) showed that ruthenium exists mainly as Ru(0) species in the matrix.¹⁰

To find optimum conditions for alcohol dehydrogenation, 1-phenylethanol was dehydrogenated under various conditions. And the results were compared with that from the reaction with commercially available Ru/Al_2O_3 and with those reported previously for acceptor-free alcohol dehydrogenation (Table 1).

The reaction rate depended on catalyst amount and temperature; complete conversion to acetophenone was achieved in 24 h at 80 °C with 1.5 mol % of Ru, while it took 10 h with 3.0 mol % of Ru and 7 h at 110 °C with 3.0 mol % of Ru.¹¹ The dehydrogenation was possible without solvent and completed in 36 h with only 0.3 mol % of Ru at 150 °C (entry 4). Notably, **1** can be recovered by simple filtration and it remained active, even in the tenth use.¹² The effect of air was not significant for the dehydrogenation with **1** (entry 6).

In comparison to a commercial ruthenium catalyst (Ru/Al_2O_3), **1** showed at least five times higher activity. Compound **1** was also much more active than the homoge-

(11) 1-Phenylethanol was not detected in the hydrogenation of acetophenone with hydrogen (1 atm) and 1 (4.0 mol % of Ru) at 80 °C in 10 h.

Table 1.	Catalytic	Dehydrogenation	of 1	-Pheny	lethanol

entry	$catalyst \ (mol \ \% \ of \ Ru)$	$T(^{\circ}\mathrm{C})$	time (h)	yield ^b (%)
1	1 (1.5)	80	10	69
2			24	>99
3	1 (3.0)	80	5	71
4			10	>99
5	1 (3.0)	110	5	90
6			7	>99
7	$1 (0.3)^c$	150	36	>99
8	$1 (3.0)^d$	80	10	96
9	$1 (3.0)^{e}$	80	8	>99
10	5% Ru/Al ₂ O ₃ $(3.0)^{f}$	80	10	21
11	$[(\eta^5-Ph_4C_4CO)_2H]Ru_2-$	110	9	81
	$((CO)_4)(\mu-H)(4.0)^g$			
12	$[\operatorname{Ru}(\mu\operatorname{-OCOC}_{2}\operatorname{F_{4}OCO})(\operatorname{CO})-(\operatorname{H_{2}O})(\operatorname{BINAP})]_{2}(0.5)^{h}$	100	92	93
13	$(PNP)Ru(H)Cl(N_2) (0.4)^i$	100	100	64
14	PhCH= $Ru(PCy_3)_2Cl_2(5.0)^j$	110	24	6

^{*a*} The dehydrogenations were performed under argon on 0.20 mmol of 1-phenylethanol dissolved in 1.0 mL of dry toluene. ^{*b*} Determined by GC. ^{*c*} Without solvent, 1 mL of 1-phenylethanol was emloyed. ^{*d*} Recovered from the ninth use. ^{*e*} In the air. ^{*f*} Purchased from Acros. ^{*g*} Reference 5. ^{*h*} Reference 6. ^{*i*} Reference 8.

Table 2. Catalytic Dehydrogenation of Various Alcohols with 1^{a}

entry	substrate	product	mol % Ru	<i>Т</i> (°С)	time (h)	yield (%) ^b
1	мео	MeO	3.0	80	8	>99
2	СІСІОН	cr to	4.5	110	36	>99
3	OH OH		3.0	80	20	>99
4	он Ц	$\overset{\circ}{\not \parallel} \overset{\circ}{\longrightarrow}$	4.5	110	15	>99
5	OH COH	<u> </u>	4.5	110	12	99
6	ОН	СНО	3.0	80	5	>99
7	ОН		3.0	80	12	98
8	ОН	Š	6.0	110	32	94
9	OH J	СНО	6.0	110	24	23 ^c
10	OH	<u>Å</u>	6.0	110	10	97
11	ОН	СССНО	6.0	110	12	93
12	OH	CHO N	6.0	110	36	80
13	Сурон	⟨_s↓ _{cho}	3.0	80	5	97
14	~ОН	сно	3.0	110	20	95

^{*a*} The dehydrogenation was performed under argon on 1.0 mmol of a substrate dissolved in 5.0 mL of dry toluene. ^{*b*} Isolated yield. ^{*c*} Determined by GC using dodecane as the internal standard.

⁽¹⁰⁾ See the Supporting Information for the characterization of **1**.

⁽¹²⁾ Ruthenium was not detected in the product obtained from the tenth use by the inductively coupled plasma (ICP) analysis. The yields in the reuse are following: (1) >99%; (2) >99%; (3) 98%; (4) 99%; (5) >99%; (6) 97%; (7) 96%; (8) 97%; (9) 97%.

neous catalysts reported recently, which include the Shvo catalyst,⁵ a diruthenium complex containing dicarboxylate and phosphine ligands,⁶ a ruthenium PNP-type complex,⁷ and the Grubbs catalyst.⁸

The scope of alcohol dehydrogenation by **1** was studied with benzylic alcohols, aliphatic ones, and those containing heteroatoms such as nitrogen and sulfur (Table 2).

High-yield dehydrogenation was achieved for aliphatic alcohols as well as for benzylic ones. Generally, benzylic alcohols were dehydrogenated faster than aliphatic ones. For example, the dehydrogenation of 1-(4-methoxyphenyl)-ethanol was completed in 8 h at 80 °C with 3.0 mol % of Ru, while that of 2-octanol required 15 h at 110 °C with 4.5 mol % of Ru. Exceptions were 1-(4-chlorophenyl)ethanol and 3-pyridylcarbinol; it took 36 h at 110 °C with 4.5 mol % of Ru for the complete conversion to 4-chloroacetophenone, and nicotinaldehyde was obtained only in 80% yield after 36 h at 110 °C with 6.0 mol % of Ru. 1,4-Butanediol as well as 1,2-beneznedimethanol transformed to the corresponding γ -lactones in high yields. However, the reaction of 1-octanol produced a complex mixture containing 1-octanal only in 23% after 24 h at 110 °C with 6.0 mol % of

Ru.¹³ Allylic alcohols transformed to the corresponding α,β unsaturated carbonyl compounds selectively. Compound **1** was also effective for the dehydrogenation of alcohols containing heteroatoms such as 3-pyridylcarbinol, 2-(hydroxymethyl)thiophene, and 4-(methylthio)benzyl alcohol.

In conclusion, we have demonstrated a highly efficient catalytic alcohol dehydrogenation, not requiring acceptors and additives. The dehydrogenation is effective for benzylic alcohols, aliphatic ones, and heteroatom-containing ones. The catalyst is readily makeable, easily recoverable, and reusable at least 10 times without activity loss.

Acknowledgment. This work was supported by a Korea Research Foundation Grant (KRF-2005-005-C00007).

Supporting Information Available: Experimental procedures for the synthesis of **1**, the dehydrogenation of 1-phenylethanol, and the characterization data for **1**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL060750Z

⁽¹³⁾ More than four peaks were observed, but the production of octyl octanoate was negligible.